If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+10x-1210=0
a = 1; b = 10; c = -1210;
Δ = b2-4ac
Δ = 102-4·1·(-1210)
Δ = 4940
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{4940}=\sqrt{4*1235}=\sqrt{4}*\sqrt{1235}=2\sqrt{1235}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-2\sqrt{1235}}{2*1}=\frac{-10-2\sqrt{1235}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+2\sqrt{1235}}{2*1}=\frac{-10+2\sqrt{1235}}{2} $
| 2x+7+3x-5+4x-3=180 | | 12.3-0.25x=-0.50x+9 | | 4b-5=6b-25 | | 0=6x^2+1x-40 | | 10.89-0.04t+0.08((563-0.08t)/0.04))=0 | | g/3+18=9 | | x-7=01 | | C+9=13+3c | | 3y+12=69 | | 96=9g−-6 | | 20=14-2(5a*2) | | 4.06=3h | | 19+-6m=-17 | | 1=g/4−5 | | 9p+25=-38 | | 00.6b=24 | | x=6x^2+x-40 | | 15+-4r=35 | | 0.5(2x+8)=x-44 | | 6w+7=85 | | -14x+2x+3=4x-13-7x | | -44+3f=46 | | 2x+20=6x9 | | 16=-36+2s | | 2x+20=6x8 | | -8x^2-3x-2=-10x^2 | | 5/4=x=4/12 | | j/5-3=2 | | 10-3.2n;=2 | | -t4=-3 | | h/5−3=1 | | (6x-1)+(11x+4)+75=180 |